Ejercicios de Otras Razones Trigonométricas, Adición de Arcos y Resolución de Triángulos

MarioProfe

6 de mayo de 2024

Los números encerrados en cuadritos corresponden al número del Ejercicio que aparece en la hoja de respuestas suministrada

01 1. Calcule:		
(a) $\cot 45^{\circ}$	(b) $\sec 0^{\circ}$	(c) $\csc 270^{\circ}$

03 2. Siendo $\sec x = 3$ y $0 < x < \frac{\pi}{2}$, calcule $\csc x$.

04 3. Dado que $\cot x = 4$ y $\pi < x < \frac{3\pi}{2}$, calcule $\sec x$.

[05] 4. Resuelva las ecuaciones para $0 < x < 2\pi$:

(a) $\csc x = 1$ (b) $\sec x = -1$ (c) $\sec x = \sqrt{2}$

(c) $\csc x = 2$ (f) $\csc x = -\sqrt{2}$

5. Si x pertenece al 4° cuadrante y $\sec x = \sqrt{2}$, entonces la expresión $\frac{1 + \operatorname{tg} x + \operatorname{cosec} x}{1 + \operatorname{cotg} x - \operatorname{cosec} x}$ es igual a:

(a) -1 (b) 0 (c) 1 (d) -2 (e) 2

[08] 6. Resuelva las inecuaciones en el dominio $U = [0, 2\pi[$.

(a) $\sec x \ge 2$ (b) $\csc x < 2$ (c) $\sec x > -2$

7. Un cable de acero estirado une una estaca P del suelo (plano y horizontal), a un punto Q de un poste vertical, con PQ=2,6m. Siendo α la medida del ángulo agudo que el cable de acero forma con el suelo, si se tiene $\csc\alpha=\frac{2\sqrt{3}}{3}$. Calcule la distancia entre la estaca y el poste.

- 10
- 8. Verifique si las siguientes expresiones son o no son identidades en los respectivos universos
 - (a) 5(x+2) = 5x + 10, en $U = \mathbb{R}$
 - (b) 6x = 12, en $U = \mathbb{R}$
 - (c) $0 \cdot x = 0$, en $U = \mathbb{R}$
 - (d) $\frac{0}{x} = 0$, en $U = \mathbb{R}$
 - (e) $\frac{0}{m} = 0$, en $U = \mathbb{R}^*$
 - (f) 1x = x, en $U = \mathbb{R}$
 - (g) $(x+3)^2 = x^2 + 9$, en $U = \mathbb{R}$
 - (h) $(x+3)^2 = x^2 + 6x + 9$, en $U = \mathbb{R}$
 - (i) $\sqrt{x^2} = |x|$, en $U = \mathbb{R}$
 - (i) $\sqrt[3]{x^3} = x$, en $U = \mathbb{R}$
- 12 9. Demuestre que cada una de las igualdades abajo es una identidad en el respectivo universo U.
 - (a) $\operatorname{sen} x \cdot \operatorname{tg} x = \operatorname{sec} x \cos x$, $\operatorname{en} U = \{x \in \mathbb{R} | \cos x \neq 0\}$
 - (b) $\csc^2 x = 1 + \cot^2 x$, en $U = \{x \in \mathbb{R} | \sin x \neq 0\}$
 - (c) $\sec^2 x + \csc^2 x = \sec^2 \cdot \csc^2 x$, en $U = \{x \in \mathbb{R} | \sin x \neq 0 \cos x \neq 0\}$
 - (d) $\sin^4 x \cos^4 x = 2 \sin^2 x 1$, en $U = \mathbb{R}$
- | 13 | 10. Calcule:
 - (a) $\cos 75^{\circ}$
 - (b) $\sin 15^{\circ}$
 - (c) tg 75°
- 14 11. Demuestre que la expresión:

$$\cos\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{3\pi}{2} + x\right) = 2\sin x$$

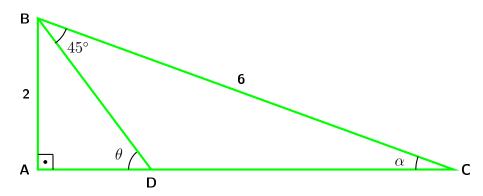
es una identidad en \mathbb{R} .

|15|12. Resuelva en $\mathbb R$ la ecuación:

$$\cos\left(x + \frac{\pi}{6}\right) = \sin\left(x + \frac{\pi}{3}\right) - 1$$

- 17 | 13. La expresión $sen(x-y) \cdot cos y + cos(x-y) \cdot sen y$ es equivalente a:
 - (a) sen(2x+y)
 - (b) $\cos(2x)$

- (c) $\sin x$
- (d) sen(2x)
- (e) $\cos(2x + 2y)$
- 18 14. Dado $\cos x = \frac{5}{13}$, $\cos \frac{3\pi}{2} < x < 2\pi$, calcule el valor de $\cos \left(x + \frac{\pi}{4}\right)$.
- 19 15. Determine la medida del segmento \overline{BD} del triángulo rectángulo ABC representado abajo.



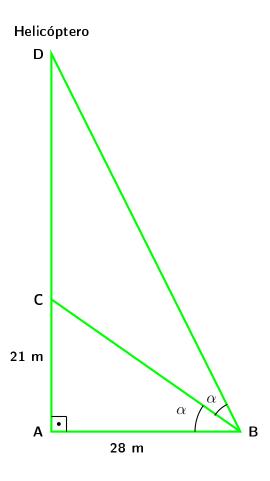
- 22 16. Calcule sen 2x y $\cos 2x$ sabiendo que sen $x = \frac{1}{3}$ y que $\frac{\pi}{2} < x < \pi$.
- 23 17. Dado que sen $x = 2\cos x$ y que $\pi < x < \frac{3\pi}{2}$, calcule sen 2x.
- 24 18. Calcule $\cos 10x$ sabiendo que $\cos 5x = \frac{5}{6}$.
- 27 19. Siendo $f(x) = \operatorname{sen} x \cdot \cos x$, el valor de $f\left(\frac{\pi}{12}\right)$ es:
 - (a) 1
 - (b) $\frac{1}{2}$
 - (c) $\frac{\sqrt{3}}{2}$

- (d) $\frac{\sqrt{2}}{2}$
- (e) $\frac{1}{4}$
- 27 20. Dado $\cos x = k$, calcule $\cos 3x$ en función de k.
- 28 21. Sabiendo que sen x = a, calcule sen 3x en función de a.
- 31 22. La expresión: $\cos^4\alpha \sin^4\alpha + \cos^2\alpha \sin^2\alpha$ es idéntica a:
 - (a) $2\cos 2\alpha$
 - (b) $2 \sin 2\alpha$

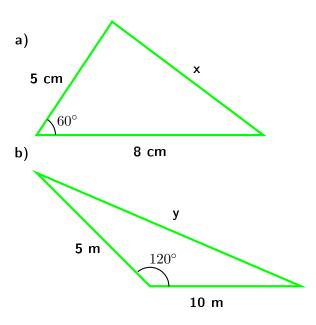
- (c) $\cos 2\alpha$
- (d) $\sin 2\alpha$
- (e) $\cos 2\alpha \sin 2\alpha$
- 32 23. Un arco de medidas x tiene una extremidad en el 3° cuadrante de la circunferencia trigonométrica y verifica la ecuación $10\cos 2x + \sin x = 9$. Determine los valores de sen x y $\cos x$.
- 34 24. Si $\operatorname{tg} \theta = 2$, el valor de $\frac{\cos 2\theta}{1 + \sin 2\theta}$ es:
 - (a) -3
 - (b) $-\frac{1}{3}$

 - (c) $\frac{1}{3}$ (d) $\frac{2}{3}$
 - (e) $\frac{3}{4}$
- 35 25. Dado que sen $\frac{x}{2} = 0,6$ y que $0 < x < \frac{\pi}{2}$, calcule sen x.
- 26. Sabiendo que sen $x = \frac{12}{13}$ y que $0 < x < \frac{\pi}{2}$, calcule $\cos \frac{x}{2}$ y sen $\frac{x}{2}$.
- 37 27. Calcule el valor de $\cos 22^{\circ}30'$
- 38 28. Dado tg $\frac{x}{2} = 2$. Entonces, tg x es igual a:
 - (a) $-\frac{3}{5}$
 - (b) $\frac{4}{5}$
 - (c) $-\frac{4}{3}$
 - (d) $\frac{4}{3}$
 - (e) $-\frac{5}{3}$

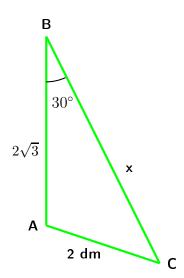
39 29. Un helicóptero, que despega verticalmente a partir de un punto A de una pista plana y horizontal es observado desde un punto B de la pista, localizado a 28 m de A. Al subir 21 m, hasta un punto C, el aparato es visto sobre un ángulo de medida α con la pista y cuando alcanza un punto D, es visto sobre un ángulo de medida 2α , conforme la figura abajo. ¿A que altura, en relación a la pista, está el helicóptero al alcanzar el punto D?.



41 30. Determine las medidas x y y en las figuras abajo:

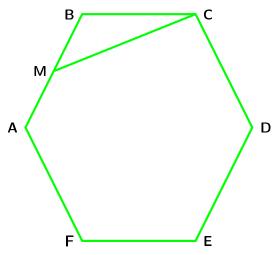


42 31. Calcule la medida x del lado \overline{BC} del triángulo abajo, observando que el ángulo $B\hat{A}C$ es obtuso.



- 43 32. Los lados de un triángulo miden 4 cm, 5 cm y 7cm.
 - (a) Calcule el coseno del mayor ángulo interno del triángulo.
 - (b) ¿El mayor ángulo interno de ese triángulo es agudo, recto o obtuso?. Justifique su respuesta.

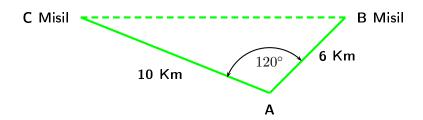
- 44 33. Dos lados consecutivos de un paralelogramo miden 5 cm y 10 cm y forman entre si un ángulo de 120°. Calcule las medidas de las diagonales de ese paralelogramo.
- 45 34. La figura abajo representa un hexágono regular ABCDEF con 6 cm de lado. Siendo M el punto medio del lado \overline{AB} , calcule la medida del segmento \overline{MC} .



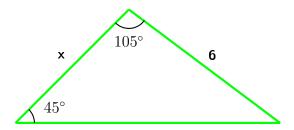
46 35. Dos navíos, A y B, están anclados en las proximidades de un canal. Desde un punto C del canal se observan los dos navíos de modo que $m(A\hat{C}B) = 60^{\circ}$, CA = 5 Km y CB = 8 Km. Calcule la distancia entre los dos navíos.

A Navío

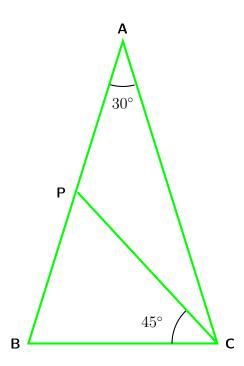
47 36. Un misil en trayectoria rectilínea fue detectado por un radar A en dos puntos, B y C, con AB = 6 Km, AC = 10 Km y $m(C\hat{A}B) = 120^{\circ}$. Determine la distancia recorrida por el misil desde el punto B al punto C.



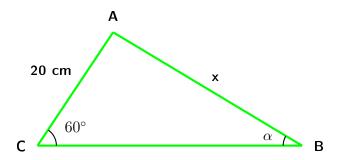
 $\boxed{48}$ 37. Determine la medida x en la figura abajo:



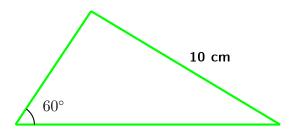
49 38. En el triángulo abajo, BC = 2 cm y los lados \overline{AB} y \overline{AC} tienen medidas iguales. Calcule la medida, en centímetros, del segmento \overline{BP} .



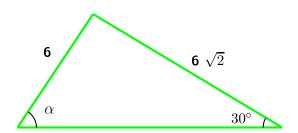
50 39. En el triángulo ABC representado abajo, dado $AC=20~{\rm cm}~{\rm y}~{\rm cos}\,\alpha=0,6$. Calcule la medida x del lado \overline{AB} .



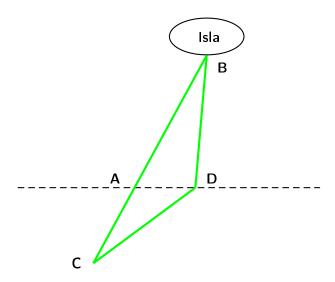
[51] 40. Calcule la medida del radio de la circunferencia circunscrita al triángulo abajo.



 $\boxed{52}$ 41. Determine la medida α del ángulo en el triángulo a seguir.



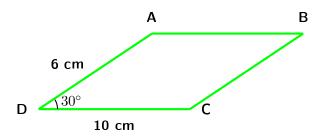
53 42. Para calcular la distancia entre un punto A de una playa y una isla B, un observador se distancia 30 m de A, sobre la recta \overrightarrow{AB} hasta el punto C, y después caminó 100 m en linea recta hasta el punto D, conforme muestra la figura abajo. Luego, midió los ángulos $D\hat{C}B$ y $B\hat{D}C$ obteniendo, respectivamente, 40° y 110°. Adoptando la aproximación sen 110° = 0, 94. ¿Cual es la distancia entre A y B?



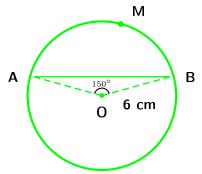
54 43. Calcule el área de cada triángulo.



55 44. Calcule el área del paralelogramo ABCD:



- $\boxed{56}$ 45. En un triángulo ABC de 5 dm^2 de área, tenemos $AB=4\ dm$ y $AC=5\ dm$. Calcule la medida del ángulo $B\hat{A}C$.
- $\boxed{57}$ 46. Calcule el área del segmento circular AMB en el círculo de centro O y radio igual a 6 cm:



(Nota: Toda cuerda \overline{AB} , con $A \neq B$, de un círculo de centro O lo divide en dos regiones llamadas segmentos circulares. Si un segmento circular AMB es menor que el semicírculo, su área es la diferencia entre el área del sector circular OAMB y el área del triángulo AOB).